Главная - Интерьер
Преобразовать рациональное выражение. Грамотное преобразование рациональных выражений

Преобразование рациональных выражений

В этом уроке поработаем с рациональными выражениями. На конкретных примерах рассмотрим методы решения задач на преобразования рациональных выражений и доказательство связанных с ними тождеств.

Рациональное выражение - алгебраическое выражение, составленное из чисел, буквенных переменных, арифметических операций, возведения в натуральную степень, и знаков последовательности этих действий (скобок). Вместе со словосочетанием «рациональное выражение» в алгебре используют иногда термины «целое» или «дробное».

Например, выражения

являются и рациональными, и целыми.

Выражения

являются и рациональными, и дробными, т.к. в знаменателе находится выражение с переменной.

Не надо забывать, что дробь теряет смысл, если знаменатель обращается в нуль.

Основной целью урока будет приобретение опыта при решении задач на упрощение рациональных выражений.

Упрощение рациональных выражений — это применение тождественных преобразований, с целью упростить запись выражения (сделать короче и удобнее для дальнейшей работы).

Для преобразования рациональных выражений нам потребуются правила сложения (вычитания), умножения, деления и возведения в степень алгебраических дробей, все эти действия совершаются по тем же правилам, что и действия с обыкновенными дробями:

А также формулы сокращенного умножения:

При решении примеров по преобразованию рациональных выражений следует соблюдать следующий порядок действий: сначала выполняются действия в скобках, затем произведение/деление (либо возведение в степень), а затем действия сложения/вычитания.

Итак, рассмотрим пример 1:

необходимо упростить выражение

Во-первых, выполняем действия в скобках.

Приводим алгебраические дроби к общему знаменателю и осуществляем сложение (вычитание) дробей с одинаковыми знаменателями по правилам, записанным выше.

Используя формулу сокращенного выражения (а именно квадрат разности), полученное выражение принимает вид:

Во-вторых, по правилам умножения алгебраических дробей перемножаем числители и отдельно знаменатели:

А затем сокращаем полученное выражение:

В результате проведенных преобразований получаем простое выражение

Рассмотрим более сложный пример 2 преобразования рациональных выражений: необходимо доказать тождество:

Доказать тождество - это установить, что при всех допустимых значениях переменных его левая и правая части равны.

Доказательство:

Чтобы доказать данное тождество, необходимо преобразовать выражение в левой части. Для этого следует соблюдать порядок действий, изложенный выше: в первую очередь выполняются действия в скобках, затем умножение, а затем уже сложение.

Итак, действие 1:

выполнить сложение/вычитание выражения в скобке.

Для этого раскладываем на множители выражения в знаменателях дробей и приводим данные дроби к общему знаменателю.

Так в знаменателе первой дроби выносим за скобку 3, в знаменателе второй - выносим знак минус и по формуле сокращенного умножения раскладываем на два множителя, а в знаменателе третьей дроби выносим за скобку x.

Общим знаменателем этих трех дробей будет выражение

Действие 2:

выполнить умножение дроби

Для этого прежде следует разложить на множители числитель первой дроби и возвести эту дробь в степень 2.

А при умножении дробей выполнить соответствующее сокращение.

Действие 3:

Суммируем первую дробь исходного выражения и получившуюся дробь

Для этого сначала разложим на множители числитель и знаменатель первой дроби и сократим:

Теперь остается только сложить полученные алгебраические дроби с разными знаменателями:

Таким образом, в результате 3-х действий и упрощения левой части тождества мы получили выражение из правой его части, а следовательно, доказали это тождество. Однако напомним, что тождество справедливо лишь для допустимых значений переменной x. Таковыми в данном примере являются любые значения x, кроме тех, которые обращают знаменатели дробей в нуль. Значит, допустимыми являются любые значения x, кроме тех, при которых выполняется хотя бы одно из равенств:

Недопустимыми будут значения:

Итак, на конкретных примерах мы рассмотрели решение задач на преобразования рациональных выражений и доказательство связанных с ними тождеств.

Список использованной литературы:

  1. Мордкович А.Г. «Алгебра» 8 класс. В 2 ч. Ч.1. Учебник для общеобразовательных учреждений/ А.Г. Мордкович. – 9-е изд., перераб. – М.: Мнемозина, 2007. – 215с.: ил.
  2. Мордкович А.Г. «Алгебра» 8 класс. В 2 ч. Ч.2. Задачник для общеобразовательных учреждений / А.Г. Мордкович, Т.Н. Мишустина, Е.Е. Тульчинская.. – 8-е изд., – М.: Мнемозина, 2006 – 239с.
  3. Алгебра. 8 класс. Контрольные работы для учащихся образовательных учреждений Л.А. Александрова под ред. А.Г. Мордковича 2-е изд., стер. - М.:Мнемозина 2009. - 40с.
  4. Алгебра. 8 класс. Самостоятельные работы для учащихся образовательных учреждений: к учебнику А.Г. Мордковича, Л.А. Александрова под ред. А.Г. Мордковича. 9-е изд., стер. - М.: Мнемозина 2013. - 112с.

Тождественные преобразования выражений – это одна из содержательных линий школьного курса математики. Тождественные преобразования широко используются при решении уравнений, неравенств, систем уравнений и неравенств. Кроме того тождественные преобразования выражений способствуют развитию сообразительности, гибкости и рациональности мышления.

Предлагаемые материалы предназначены для учащихся 8 класса и включают в себя теоретические основы тождественных преобразований рациональных и иррациональных выражений, типы задач на преобразование таких выражений и текст контрольной работы .

1. Теоретические основы тождественных преобразований

Выражениями в алгебре называют записи, состоящие из чисел и букв, соединенных знаками действий.

https://pandia.ru/text/80/197/images/image002_92.gif" width="77" height="21 src=">.gif" width="20" height="21 src="> – алгебраические выражения.

В зависимости от операций различают рациональные и иррациональные выражения.

Алгебраические выражения называют рациональными, если относительно входящих в него букв а , b , с , … не выполняется никаких других операций, кроме операций сложения, умножения, вычитания, деления и возведения в целую степень.

Алгебраические выражения, содержащие операции извлечения корня из переменной или возведения переменной в рациональную степень, не являющуюся целым числом, называются иррациональными относительно этой переменной.

Тождественным преобразованием данного выражения называется замена одного выражения другим, тождественно равным ему на некотором множестве.

В основе тождественных преобразований рациональных и иррациональных выражений лежат следующие теоретические факты.

1. Свойства степеней с целым показателем:

, n ÎN; а 1=а ;

, n ÎN, а ¹0; а 0=1, а ¹0;

, а ¹0;

, а ¹0;

, а ¹0;

, а ¹0, b ¹0;

, а ¹0, b ¹0.

2. Формулы сокращенного умножения:

где а , b , с – любые действительные числа;

Где а ¹0, х 1 и х 2 – корни уравнения .

3. Основное свойство дроби и действия над дробями:

, где b ¹0, с ¹0;

; ;

4. Определение арифметического корня и его свойства:

; , b ¹0; https://pandia.ru/text/80/197/images/image026_24.gif" width="84" height="32">; ; ,

где а , b – неотрицательные числа, n ÎN, n ³2, m ÎN, m ³2.

1. Типы упражнений на преобразование выражений

Существуют различные типы упражнений на тождественные преобразования выражений. Первый тип : явно указано то преобразование, которое необходимо выполнить.

Например.

1. Представьте в виде многочлена .

При выполнении указанного преобразования использовали правила умножения и вычитания многочленов, формулу сокращенного умножения и приведение подобных слагаемых.

2. Разложите на множители: .

При выполнении преобразования использовали правило вынесения общего множителя за скобку и 2 формулы сокращенного умножения.

3. Сократите дробь:

.

При выполнении преобразования использовали вынесение общего множителя за скобку, переместительный и сократительный законы, 2 формулы сокращенного умножения, действия над степенями.

4. Вынесите множитель из-под знака корня, если а ³0, b ³0, с ³0: https://pandia.ru/text/80/197/images/image036_17.gif" width="432" height="27">

Использовали правила действий над корнями и определение модуля числа.

5. Избавьтесь от иррациональности в знаменателе дроби .

Второй тип упражнений – это упражнения, в которых явно указано то главное преобразование, которое необходимо выполнить. В таких упражнениях требование обычно сформулировано в одном из видов: упростить выражение, вычислить. При выполнении таких упражнений необходимо прежде всего выявить, какие и в каком порядке необходимо выполнить преобразования, чтобы выражение приняло более компактный вид, чем данное, или получился числовой результат.

Например

6. Упростите выражение:

Решение:

.

Использовали правила действий над алгебраическими дробями и формулы сокращенного умножения.

7. Упростить выражение:

.

Если а ³0, b ³0, а ¹b .

Использовали формулы сокращенного умножения, правила сложения дробей и умножения иррациональных выражений, тождество https://pandia.ru/text/80/197/images/image049_15.gif" width="203" height="29">.

Использовали операцию выделения полного квадрата, тождество https://pandia.ru/text/80/197/images/image053_11.gif" width="132 height=21" height="21">, если .

Доказательство:

Так как , то и или или или , т. е. .

Использовали условие и формулу суммы кубов.

Надо иметь в виду, что условия, связывающие переменные, могут быть заданы и в упражнениях первых двух типов.

Например.

10. Найдите , если .

Урок и презентация на тему: "Преобразование рациональных выражений. Примеры решения задач"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания. Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 8 класса
Пособие к учебнику Муравина Г.К. Пособие к учебнику Макарычева Ю.Н.

Понятие о рациональном выражении

Понятие "рациональное выражение" схоже с понятием "рациональная дробь". Выражение также представляется в виде дроби. Только в числители у нас - не числа, а различного рода выражения. Чаще всего этого многочлены. Алгебраическая дробь - дробное выражение, состоящее из чисел и переменных.

При решении многих задач в младших классах после выполнения арифметических операций мы получали конкретные числовые значения, чаще всего дроби. Теперь после выполнения операций мы будем получать алгебраические дроби. Ребята, помните: чтобы получить правильный ответ, необходимо максимально упростить выражение, с которым вы работаете. Надо получить самую маленькую степень, какую возможно; одинаковые выражения в числители и знаменатели стоит сократить; с выражениями, которые можно свернуть, надо так и поступить. То есть после выполнения ряда действий мы должны получить максимально простую алгебраическую дробь.

Порядок действий с рациональными выражениями

Порядок действий при выполнении операций с рациональными выражениями такой же, как и при арифметических операциях. Сначала выполняются действия в скобках, потом – умножение и деление, возведение в степень и наконец – сложение и вычитание.

Доказать тождество – это значит показать, что при всех значениях переменных правая и левая части равны. Примеров с доказательством тождеств очень много.

К основным способам решения тождеств относятся.

  • Преобразование левой части до равенства с правой.
  • Преобразование правой части до равенства с левой.
  • Преобразование левой и правой части по отдельности, до тех пор пока не получится одинаковое выражение.
  • Из левой части вычитают правую, и в итоге должен получиться нуль.

Преобразование рациональных выражений. Примеры решения задач

Пример 1.
Докажите тождество:

$(\frac{a+5}{5a-1}+\frac{a+5}{a+1}):{\frac{a^2+5a}{1-5a}}+\frac{a^2+5}{a+1}=a-1$.

Решение.
Очевидно, нам надо преобразовать левую часть.
Сначала выполним действия в скобках:

1) $\frac{a+5}{5a-1}+\frac{a+5}{a+1}=\frac{(a+5)(a+1)+(a+5)(5a-1)}{(a+1)(5a-1)}=$
$=\frac{(a+5)(a+1+5a-1)}{(a+1)(5a-1)}=\frac{(a+5)(6a)}{(a+1)(5a-1)}$

.

Выносить общие множители надо стараться по максимуму.
2) Преобразуем выражение, на которое делим:

$\frac{a^2+5a}{1-5a}=\frac{a(a+5)}{(1-5a}=\frac{a(a+5)}{-(5a-1)}$

.
3) Выполним операцию деления:

$\frac{(a+5)(6a)}{(a+1)(5a-1)}:\frac{a(a+5)}{-(5a-1)}=\frac{(a+5)(6a)}{(a+1)(5a-1)}*\frac{-(5a-1)}{a(a+5)}=\frac{-6}{a+1}$.

4) Выполним операцию сложения:

$\frac{-6}{a+1}+\frac{a^2+5}{a+1}=\frac{a^2-1}{a+1}=\frac{(a-1)(a+1)}{a+})=a-1$.

Правая и левая части совпали. Значит, тождество доказано.
Ребята, при решении данного примера нам понадобилось знание многих формул и операций. Мы видим, что после преобразования большое выражение превратилось совсем в маленькое. При решении почти всех задач, обычно преобразования приводят к простым выражениям.

Пример 2.
Упростите выражение:

$(\frac{a^2}{a+b}-\frac{a^3}{a^2+2ab+b^2}):(\frac{a}{a+b}-\frac{a^2}{a^2-b^2})$.

Решение.
Начнем с первых скобок.

1. $\frac{a^2}{a+b}-\frac{a^3}{a^2+2ab+b^2}=\frac{a^2}{a+b}-\frac{a^3}{(a+b)^2}=\frac{a^2(a+b)-a^3}{(a+b)^2}=$
$=\frac{a^3+a^2 b-a^3}{(a+b)^2}=\frac{a^2b}{(a+b)^2}$.

2. Преобразуем вторые скобки.

$\frac{a}{a+b}-\frac{a^2}{a^2-b^2}=\frac{a}{a+b}-\frac{a^2}{(a-b)(a+b)}=\frac{a(a-b)-a^2}{(a-b)(a+b)}=$
$=\frac{a^2-ab-a^2}{(a-b)(a+b)}=\frac{-ab}{(a-b)(a+b)}$.

3. Выполним деление.

$\frac{a^2b}{(a+b)^2}:\frac{-ab}{(a-b)(a+b)}=\frac{a^2b}{(a+b)^2}*\frac{(a-b)(a+b)}{(-ab)}=$
$=-\frac{a(a-b)}{a+b}$

.

Ответ: $-\frac{a(a-b)}{a+b}$.

Пример 3.
Выполните действия:

$\frac{k-4}{k-2}:(\frac{80k}{(k^3-8}+\frac{2k}{k^2+2k+4}-\frac{k-16}{2-k})-\frac{6k+4}{(4-k)^2}$.


Решение.
Как всегда надо начинать со скобок.

1. $\frac{80k}{k^3-8}+\frac{2k}{k^2+2k+4}-\frac{k-16}{2-k}=\frac{80k}{(k-2)(k^2+2k+4)} +\frac{2k}{k^2+2k+4}+\frac{k-16}{k-2}=$

$=\frac{80k+2k(k-2)+(k-16)(k^2+2k+4)}{(k-2)(k^2+2k+4)}=\frac{80k+2k^2-4k+k^3+2k^2+4k-16k^2-32k-64}{(k-2)(k^2+2k+4)}=$

$=\frac{k^3-12k^2+48k-64}{(k-2)(k^2+2k+4)}=\frac{(k-4)^3}{(k-2)(k^2+2k+4)}$.

2. Теперь выполним деление.

$\frac{k-4}{k-2}:\frac{(k-4)^3}{(k-2)(k^2+2k+4)}=\frac{k-4}{k-2}*\frac{(k-2)(k^2+2k+4)}{(k-4)^3}=\frac{(k^2+2k+4)}{(k-4)^2}$.

3. Воспользуемся свойством: $(4-k)^2=(k-4)^2$.
4. Выполним операцию вычитания.

$\frac{(k^2+2k+4)}{(k-4)^2}-\frac{6k+4}{(k-4)^2}=\frac{k^2-4k}{(k-4)^2}=\frac{k(k-4)}{(k-4)^2}=\frac{k}{k-4}$.


Как мы раньше говорили, упрощать дробь надо максимально.
Ответ: $\frac{k}{k-4}$.

Задачи для самостоятельного решения

1. Докажите тождество:

$\frac{b^2-14}{b-4}-(\frac{3-b}{7b-4}+\frac{b-3}{b-4})*\frac{4-7b}{9b-3b^2}=b+4$.


2. Упростите выражение:

$\frac{4(z+4)^2}{z-2}*(\frac{z}{2z-4}-\frac{z^2+4}{2z^2-8}-\frac{2}{z^2+2z})$.


3. Выполните действия:

$(\frac{a-b}{a^2+2ab+b^2}-\frac{2a}{(a-b)(a+b)}+\frac{a-b}{(a-b)^2})*\frac{a^4-b^4}{8ab^2}+\frac{2b^2}{a^2-b^2}$.

На данном уроке будут рассмотрены основные сведения о рациональных выражениях и их преобразованиях, а также примеры преобразования рациональных выражений. Данная тема как бы обобщает изученные нами до этого темы. Преобразования рациональных выражений подразумевают сложение, вычитание, умножение, деление, возведение в степень алгебраических дробей, сокращение, разложение на множители и т. п. В рамках урока мы рассмотрим, что такое рациональное выражение, а также разберём примеры на их преобразование.

Тема: Алгебраические дроби. Арифметические операции над алгебраическими дробями

Урок: Основные сведения о рациональных выражениях и их преобразованиях

Определение

Рациональное выражение - это выражение, состоящее из чисел, переменных, арифметических операций и операции возведения в степень.

Рассмотрим пример рационального выражения:

Частные случаи рациональных выражений:

1. степень: ;

2. одночлен: ;

3. дробь: .

Преобразование рационального выражения - это упрощение рационального выражения. Порядок действий при преобразовании рациональных выражений: сначала идут действия в скобках, затем операции умножения (деления), а затем уже операции сложения (вычитания).

Рассмотрим несколько примеров на преобразование рациональных выражений.

Пример 1

Решение:

Решим данный пример по действиям. Первым выполняется действие в скобках.

Ответ:

Пример 2

Решение:

Ответ:

Пример 3

Решение:

Ответ: .

Примечание: возможно, у вас при виде данного примера возникла идея: сократить дробь перед тем, как приводить к общему знаменателю. Действительно, она является абсолютно правильной: сначала желательно максимально упростить выражение, а затем уже его преобразовывать. Попробуем решить этот же пример вторым способом.

Как видим, ответ получился абсолютно аналогичным, а вот решение оказалось несколько более простым.

На данном уроке мы рассмотрели рациональные выражения и их преобразования , а также несколько конкретных примеров данных преобразований.

Список литературы

1. Башмаков М.И. Алгебра 8 класс. - М.: Просвещение, 2004.

2. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 8. - 5-е изд. - М.: Просвещение, 2010.


Эта статья посвящена преобразованию рациональных выражений , преимущественно дробно рациональных, – одному из ключевых вопросов курса алгебры для 8 классов. Сначала мы напомним, выражения какого вида называют рациональными. Дальше остановимся на проведении стандартных преобразований с рациональными выражениями, таких как группировка слагаемых, вынесение за скобки общих множителей, приведение подобных слагаемых и т.п. Наконец, научимся представлять дробные рациональные выражения в виде рациональных дробей.

Навигация по странице.

Определение и примеры рациональных выражений

Рациональные выражения являются одним из видов выражений , изучаемых на уроках алгебры в школе. Дадим определение.

Определение.

Выражения, составленные из чисел, переменных, скобок, степеней с целыми показателями, соединенных с помощью знаков арифметических действий +, −, · и:, где деление может быть обозначено чертой дроби, называются рациональными выражениями .

Приведем несколько примеров рациональных выражений: .

Рациональные выражения начинают целенаправленно изучаться в 7 классе. Причем в 7 классе познаются основы работы с так называемыми целыми рациональными выражениями , то есть, с рациональными выражениями, которые не содержат деления на выражения с переменными. Для этого последовательно изучаются одночлены и многочлены , а также принципы выполнения действий с ними. Эти все знания в итоге позволяют выполнять преобразование целых выражений .

В 8 классе переходят к изучению рациональных выражений, содержащих деление на выражение с переменными, которые называют дробными рациональными выражениями . При этом особое внимание уделяется так называемым рациональным дробям (их также называют алгебраическими дробями ), то есть дробям, в числителе и знаменателе которых находятся многочлены. Это в итоге дает возможность выполнять преобразование рациональных дробей .

Полученные навыки позволяют перейти к преобразованию рациональных выражений произвольного вида. Это объясняется тем, что любое рациональное выражение можно рассматривать как выражение, составленное из рациональных дробей и целых выражений, соединенных знаками арифметических действий. А работать с целыми выражениями и алгебраическими дробями мы уже умеем.

Основные виды преобразований рациональных выражений

С рациональными выражениями можно проводить любые из основных тождественных преобразований , будь то группировка слагаемых или множителей, приведение подобных слагаемых, выполнение действий с числами и т.п. Обычно целью выполнения этих преобразований является упрощение рационального выражения .

Пример.

.

Решение.

Понятно, что данное рациональное выражение представляет собой разность двух выражений и , причем данные выражения являются подобными, так как имеют одинаковую буквенную часть. Таким образом, мы можем выполнить приведение подобных слагаемых :

Ответ:

.

Понятно, что при проведении преобразований с рациональными выражениями, как, впрочем, и с любыми другими выражениями, нужно оставаться в рамках принятого порядка выполнения действий .

Пример.

Выполните преобразование рационального выражения .

Решение.

Мы знаем, что сначала выполняются действия в скобках. Поэтому в первую очередь преобразуем выражение в скобках: 3·x−x=2·x .

Теперь можно подставить полученный результат в исходное рациональное выражение: . Так мы пришли к выражению, содержащему действия одной ступени – сложение и умножение.

Избавимся от скобок в конце выражения, применив свойство деления на произведение: .

Наконец, мы можем сгруппировать числовые множители и множители с переменной x, после чего выполнить соответствующие действия с числами и применить : .

На этом преобразование рационального выражения завершено, и в результате мы получили одночлен.

Ответ:

Пример.

Преобразуйте рациональное выражение .

Решение.

Сначала преобразуем числитель и знаменатель. Такой порядок преобразования дробей объясняется тем, что черта дроби по своей сути есть другое обозначение деления, и исходное рациональное выражение по сути есть частное вида , а действия в скобках выполняются в первую очередь.

Итак, в числителе выполняем действия с многочленами, сначала умножение, затем – вычитание, а в знаменателе сгруппируем числовые множители, и вычислим их произведение: .

Еще представим числитель и знаменатель полученной дроби в виде произведения: вдруг возможно сокращение алгебраической дроби . Для этого в числителе воспользуемся формулой разности квадратов , а в знаменателе вынесем двойку за скобки, имеем .

Ответ:

.

Итак, начальное знакомство с преобразованием рациональных выражений можно считать состоявшимся. Переходим, так сказать, к самому сладкому.

Представление в виде рациональной дроби

Наиболее часто конечной целью преобразования выражений является упрощение их вида. В этом свете самым простым видом, к которому можно преобразовать дробно рациональное выражение, является рациональная (алгебраическая) дробь, и в частном случае многочлен, одночлен или число.

А любое ли рациональное выражение возможно представить в виде рациональной дроби? Ответ утвердительный. Поясним, почему это так.

Как мы уже сказали, всякое рациональное выражение можно рассматривать как многочлены и рациональные дроби, соединенные знаками плюс, минус, умножить и разделить. Все соответствующие действия с многочленами дают многочлен или рациональную дробь. В свою очередь любой многочлен можно преобразовать в алгебраическую дробь, записав его со знаменателем 1 . А сложение, вычитание, умножение и деление рациональных дробей в результате дают новую рациональную дробь. Следовательно, выполнив все действия с многочленами и рациональными дробями в рациональном выражении, мы получим рациональную дробь.

Пример.

Представьте в виде рациональной дроби выражение .

Решение.

Исходное рациональное выражение представляет собой разность дроби и произведения дробей вида . Согласно порядку выполнения действий мы сначала должны выполнить умножение, а уже потом – сложение.

Начинаем с умножения алгебраических дробей :

Подставляем полученный результат в исходное рациональное выражение: .

Мы пришли к вычитанию алгебраических дробей с разными знаменателями:

Итак, выполнив действия с рациональными дробями, составляющими исходное рациональное выражение, мы его представили в виде рациональной дроби .

Ответ:

.

Для закрепления материала разберем решение еще одного примера.

Пример.

Представьте рациональное выражение в виде рациональной дроби.

 


Читайте:



Чтобы милый заскучал: действенные заговоры на тоску Самый сильный заговор на переклад тоски

Чтобы милый заскучал: действенные заговоры на тоску Самый сильный заговор на переклад тоски

Перенести разлуку бывает нелегко, но не каждый человек готов это признать. Порой, чтобы сподвигнуть объект обожания на первый шаг, его нужно слегка...

Информация для влюбленных: самые совместимые знаки зодиака

Информация для влюбленных: самые совместимые знаки зодиака

Когда дело касается личной жизни, безоговорочно подчиняться законам астрологии не стоит, однако изучить ее прогнозы относительно благоприятности...

Русскую авиабазу в Сирии обстреляла «замирённая» группировка исламистов А что Россия

Русскую авиабазу в Сирии обстреляла «замирённая» группировка исламистов А что Россия

В Сирии 31 декабря обстреляна авиабаза Хмеймим, имеются потери среди российских военнослужащих. Это могла сделать группировка «Ахрар аш-Шам», ранее...

Мини-гид по Калмыкии: Тюльпановые поля, буддизм и Время цветения тюльпанов в калмыкии

Мини-гид по Калмыкии: Тюльпановые поля, буддизм и Время цветения тюльпанов в калмыкии

В середине апреля в Калмыкии, можно наблюдать уникальное явление – цветение степных тюльпанов. На сегодняшний день во всем мире очень мало таких...

feed-image RSS